Directed Actin Polymerization Is the Driving Force for Epithelial Cell–Cell Adhesion
نویسندگان
چکیده
We have found that epithelial cells engage in a process of cadherin-mediated intercellular adhesion that utilizes calcium and actin polymerization in unexpected ways. Calcium stimulates filopodia, which penetrate and embed into neighboring cells. E-cadherin complexes cluster at filopodia tips, generating a two-rowed zipper of embedded puncta. Opposing cell surfaces are clamped by desmosomes, while vinculin, zyxin, VASP, and Mena are recruited to adhesion zippers by a mechanism that requires alpha-catenin. Actin reorganizes and polymerizes to merge puncta into a single row and seal cell borders. In keratinocytes either null for alpha-catenin or blocked in VASP/Mena function, filopodia embed, but actin reorganization/polymerization is prevented, and membranes cannot seal. Taken together, a dynamic mechanism for intercellular adhesion is unveiled involving calcium-activated filopodia penetration and VASP/Mena-dependent actin reorganization/polymerization.
منابع مشابه
Giant Vesicles Compressed by Actin Polymerization
Actin polymerization plays a critical role in generating propulsive force to drive many types of cell motility. The discovery of actin based motility of the bacterial pathogen Listeria monocytogenes has lead to clearer understandings of the essential ingredients required for cell motility. The biophysical mechanisms by which these proteins generate forces is the subject of intense investigation...
متن کاملFormin-mediated actin polymerization at cell–cell junctions stabilizes E-cadherin and maintains monolayer integrity during wound repair
Cadherin-mediated cell-cell adhesion is required for epithelial tissue integrity in homeostasis, during development, and in tissue repair. E-cadherin stability depends on F-actin, but the mechanisms regulating actin polymerization at cell-cell junctions remain poorly understood. Here we investigated a role for formin-mediated actin polymerization at cell-cell junctions. We identify mDia1 and Fm...
متن کاملJunctional actin assembly is mediated by Formin-like 2 downstream of Rac1
Epithelial integrity is vitally important, and its deregulation causes early stage cancer. De novo formation of an adherens junction (AJ) between single epithelial cells requires coordinated, spatial actin dynamics, but the mechanisms steering nascent actin polymerization for cell-cell adhesion initiation are not well understood. Here we investigated real-time actin assembly during daughter cel...
متن کاملFHOD1 is needed for directed forces and adhesion maturation during cell spreading and migration.
Matrix adhesions provide critical signals for cell growth or differentiation. They form through a number of distinct steps that follow integrin binding to matrix ligands. In an early step, integrins form clusters that support actin polymerization by an unknown mechanism. This raises the question of how actin polymerization occurs at the integrin clusters. We report here that a major formin in m...
متن کاملProteasome-mediated degradation of Rac1-GTP during epithelial cell scattering.
Epithelial cells disassemble their adherens junctions and "scatter" during processes such as tumor cell invasion as well as some stages of embryonic development. Control of actin polymerization is a powerful mechanism for regulating the strength of cell-cell adhesion. In this regard, studies have shown that sustained activation of Rac1, a well-known regulator of actin dynamics, results in the a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cell
دوره 100 شماره
صفحات -
تاریخ انتشار 2000